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An approximate expression for the collective behavior of  many Langmuir -Hinshelwood reactions 
is derived. The derivation is based on the assumption that all the reactants not only have comparable 
reactivities but also comparable adsorptivities. Comparison with exact results shows excellent 
agreement  over  a reasonably broad range of  kinetic parameters.  The expression can be used for 
data analysis and correlation. © 1991 Academic Press, Inc. 

Recently, there has been considerable in- 
terest in the problem of predicting the col- 
lective behavior of many nonlinear reac- 
tions (1-10). This was motivated mainly by 
two factors. One is that in many practical 
situations it is the collective behavior, not 
the individual behavior, that matters (11). 
For example, in industrial hydrodesulfuriza- 
tion process, one cares only about the re- 
duction of total sulfur, not of the individual 
sulfur-containing species. The other factor 
is that while the problem of finding the col- 
lective behavior of linear kinetics (first or- 
der) had already been solved many years 
ago (12-15), the more general case where 
the underlying kinetics are nonlinear have 
presented some mathematical difficulties 
(1). 

The purpose of this work was to derive 
an approximate, closed-form expression for 
the collective behavior of many Lang- 
muir-Hinshelwood (LH) kinetics. This 
problem has been treated for situations 
where the number of reactants is so large 
that the system can be approximated by a 
continuum (2, 4-6,  10). We do not invoke 
this assumption here. Rather, we assume 
that all the reactants have comparable reac- 
tivities and also comparable adsorptivities. 
With this assumption the problem becomes 
amenable to a perturbative analysis. The re- 
sult may be used for data analysis and/or 
correlation, Li and Ho (9) used a similar 
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approach to lump bimolecular reactions of 
comparable rates. 

PROBLEM STATEMENT 

Consider the following class of LH kinet- 
ics in an isothermal system (batch or plug- 
flow reactors) having N different reactants. 
The mass balance equations are 

d ( i  __ ' - . k i K i c i  

dt 1 + ~,i u , I~i( i 

i =  1 , 2 , ' "  • ,N ;  t = 0, ( i =  6x, (1) 

where k~ and/(i are the surface rate constant 
and adsorption equilibrium constant, re- 
spectively. 

The concentrations of the total reactant 
lump at time t and zero are, respectively, 

N N 

= Z ( i  C f  = E c i f '  (2) 
i=l i=l 

where Ce is a finite, measurable quantity. 
Our task is to find e ,  the lump, as a function 
of t. Upon summing over i and letting ki = 
k[R i, Eq. (1) becomes 

de 
(3) 

d-7 1 + ziN_,_ Ki (i" 

It should be pointed out that the present 
problem may be discussed in a different con- 
text: dCIdt may be thought of as the total 
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reaction rate over  an ensemble of energeti- 
cally heterogenous  catalytic sites. The cou- 
pled differential equations represented by 
Eqs. (1) and (3) are intractable analytically. 
In what follows we seek an approximate 
solution based on the observat ion that the 
lumped species are in general chemically 
similar. 

P E R T U R B A T 1 V E  A N A L Y S I S  

In practice,  it is at the discretion of  the 
kineticist as to how the various species 
should be lumped. One way to render the 
problem perturbative is to select a lump 
whose consti tuents have comparable rate 
constants and, in addition, comparable ad- 
sorpton coefficients. In so doing, we can 
decompose/ / i  and Ri into " b a s e "  and "devi-  
a tor ic"  components ,  that is 

f~ = -k + k~, [k~] ~ k, (4) 

K, -- ~" + K,  IK, I ~ ~', (5) 

where the base components  are average val- 
ues defined as 

N ' N " (6) 

To proceed further,  we define the follow- 
ing nondimensional quantities: 

(~i ( i f  
l - - - - k t  c i - ~ f  c i f  = <_ 

- -  k i 
C - ~ f  tz  = K C f  Og i -- 

K i  
/ 3 i -  - oe = maxlail /3 = max//3i[ 

K i i 

Xi = ai  vi = ~i .  
c~ /3 (7) 

Thus,  a and/3 are measures of  the maximum 
spreads of  J~i and Ri, respectively.  By means 
of Eq. (6), we have 

E = E/3  = 0. is) 
i i 

And we can recast  Eqs. (1) and (3) as 

d c  i (1 + o~hi) c i 
- -  = - ( 9 )  

dr 1 + I~(C +/3 ~ i  vici) 

dC C + o~ E i  ~kic i 
- (10) 

dr I + tz(C +/3  ~]i v~('~) 

with the initial conditions 

7" = 0 ,  C i = C i f ,  C = 1. (11) 

The parameters a and/3 are both small and 
of comparable magnitudes. Our task now is 
to find an approximate expression for C as 
a function of r. 

The solutions to Eqs. (9) and (10) for small 
a and/3 can be sought in terms of the expan- 
sions 

ci = Cio + aun + /3u;i + hot (12) 

C = C o + aU1 + [3U'~ + hot, (13) 

where hot stands for higher-order terms and 

N N 

co : E c,o, u,,, : E ,,, .... 
i = l  i = 1  

N 
U~,,=~,u~m; m =  1 , 2 , ' ' , N .  (14) 

i=l 

Substituting Eqs. (12) and (13) into Eqs. (9) 
and (10) and equating coefficients of like 
powers of  a and/3, we obtain a set of pertur- 
bation equations, the first six of which are 

dcio Cio 
(15) 

dr 1 + tzC o 

drill  _ t in "J- )kiCio ~ C i ( ) U  I 
+ (16) 

dr 1 + #Co (1 + /*Co) 2 

du;j a;i Izcio(Ui + E v f i  o) - -  .= + 
dr 1 + IxCo (1 + ~C0)2 

(17) 

dCo Co 
- -  = ( 1 8 )  
dr 1 + gCo 

dU~ Ut -it- ~ )kiCi 0 [d~UIC 0 

d ~ - =  I + ~Co +(1  + ktCo) 2 (19) 

dUi UI 

dr I + btCo 
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txUiCo + tzCo ~ viCio 
(1 +/xC0) 2 (20) 

The corresponding initial conditions are 

"I" = O, Cio = Cif, ~lim = U~m = 0 (21) 

C0=  1, Urn= U ' =  0. (22) 

Observe that Eqs. (15) and (18) represent 
the limiting case a = /3 = 0 where all the 
reactants are kinetically indistinguishable. 
Hence ,  the mixture behaves like a single 
component ,  and Eqs. (15) and (18) of  course 
have the same form. 

Equations (15) and (18) can be combined 
to give 

dcio _ Cio 
dCo Co' (23) 

which upon integration yields 

Cio = cifCo. (24) 

With Eqs. (21) and (24), one can solve Eq. 
(15) to obtain c~o (so Co) as an implicit func- 
tion of  r;  namely,  

~ - = / z ( 1 - c ~ °  / - In c~-2° (25) 
Cif /  Cif 

~" = /z(1 - Co) - In Co. (26) 

Equation (26) says that in terms of  reaction 
time for a given conversion,  the Lang- 
mui r -Hinshe lwood  kinetics represented by 
Eq. (18) is a sum of  zeroth-order  and first- 
order  kinetics. 

It follows from Eq. (26) that 

d r = - ( t x + ~ - ~ o ) d C  o. (27) 

Substituting Eqs.(27) and (24) into Eq. (19), 
one can relate Co to UI by the differential 
equation 

dU1 UI tzUl 
- o- + ( 2 8 )  

dCo C O 1 + i~C o' 

which is subject to the initial condition 

Co = 1, U, = 0. (29) 

In Eq. (28) o- is defined as 

N 

O" ~ Z XiCif" ( 3 0 )  
i=1 

In the same vein, one can relate Co to U'~ as 

dU I U'j tzU'j + txaCo 
- -  = ( 3 1 )  
dC o C o 1 + txCo 

C o =  1, U I = 0  (32) 

N 

(33) ~ Z l~iCif" 
i=1 

The solutions to Eqs. (28) and (31) are, re- 
spectively, 

o-C 0 
U I - [/x(C 0 - 1) + In C 0] (34) 

1 + txC o 

8/~C0(1 - Co) 
u i  = (35) 

1 + /xC 0 

It now follows that the total concentrat ion 
C at any time can be approximately calcu- 
lated by the following pair of expressions 

C - C ~  = Co + c~Ui + /3UI = Co 

Co 
+ - - [ ~ ( 1  - Co)(3~ - oa) 

1 + / z C 0  

+ ao- In Co] (36) 

r = /z(1 - Co) - In Co. (26) 

Here Co and Cj are zeroth- and first-order 
approximations to C(r), respectively.  While 
dCo/dr can be expressed as a function of  Co 
[Eq. (18)], this is not the case for dC/dr .  If  
this were the case, then dC~/dr = f (CO can 
be viewed as an approximate overall kinetic 
constitutive expression for the mixture as a 
whole. By contrast,  for continuous mix- 
tures, one can derive exact overall kinetics 
for certain types of  L H  reactions (4-6). 

Equation (36) provides a functional form 
for data correlation, which is independent  
of the size (the N value) of the mixture. To 
a first approximation, the overall behavior  
o_f the mixt_ure depends parametrically on 
K, ~, Kicif/K, and ~ kicif/k. In the absence 
of such functional form, it is common in 
practice to empirically fit the C vs ~- data 
by a power-law equation. The problem with 
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this approach  is that the power- law parame-  
ters depend on the convers ion level. 

S P E C I A L  C A S E S  

Explicit  express ions  for C as a function 
o f r  can be obtained for some limiting cases.  
For example ,  when all species are strongly 
adsorbed , /x  > 1, we then can simplify Eq. 
(36) to 

C -  1 - r ( 1  -- /38 + O-O0. (37) 
/,t 

That  is, to a first approximat ion,  C decays  
linearly as zero-order  kinetics. The exhaus-  
tion t ime occurs  when r = r* - / , / ( 1  - /38 
+ o-o0 - ~. 

On the other  hand, when all the species 
are weakly  adsorbed,  tt ~ 1, then 

C -  e 7(1 - so-r) ,  (38) 

which departs  slightly f rom first-order be- 
havior  ove r  a relatively wide range of con- 
version (cm- is small). Unlike Co, Ci is not a 
composi te  of  first- and zero-order  kinetics. 
Note  that the exhaust ion time in this case 
occurs  at r = r* - l/so-.  

N U M E R I C A L  R E S U L T S  

To assess  the accuracy  of  the perturbat ion 
solution, we computed  the exact  solution 
by numerical ly integrating Eqs.  (9) and (I0) 
using a four th-order  R u n g e - K u t t a  method.  
It is to this that the per turbat ion solution is 
compared .  For  simplicity, all the calcula- 
tions were made for N = 3 and the following 
vi and h i values: (vl, u2, us) = (0.34, - 0 . 1 9 ,  
-0 .15 ) ;  (~.~, ,k,, X3) = (0.28, 0.16, -0 .44) .  

Example  1 

Here  we let o~ -- 0.2,/3 = 0.15, and tt -- 
1. The feed composi t ion  is ( c i f ) =  (0.17, 
0.42, 0.41). Table 1 compares  the results. 
The second column lists the exact  solution 
calculated numerically.  The third and fourth 
columns list the corresponding values of  C~ 
and Co, respect ively.  One sees that the ap- 
proximate  express ion,  Eq. (36), gives al- 
most  the exact  results. Even  the zeroth-or-  
der approximat ion  is quite accurate .  

TABLE 1 

Comparison of Numerical and Perturbaton Solutions 

(~ = 0.2, 3 = 0.15) 

r C~,~,~, C~ Co 

0 1.000000 1.000000 1.000000 
0.3 0.856790 0.856744 (I.855763 
0.6 0.725575 0.725416 0.723565 
0.9 (!.606970 0.606647 0.604068 
1.2 0.501378 0.500861 (I.497719 
1.5 0.408916 0.408195 (}.404674 
1.8 I).329365 (}.328454 0.324738 
2.1 0.262149 (}.261079 0.257344 
2.4 (}.206368 (t.205183 0.201578 
2.7 0.160866 0.159616 0.156257 
3.0 0.124330 0.123065 0.120028 
3.3 0.094052 0.094168 (}.091493 
3.6 0.072780 0.071606 0.069301 
4.2 0.041805 (}.1140820 0.039195 
4.8 0.023743 0.022973 0.021886 
5.4 0.(}13401 0.012830 0.012129 
6.0 0.007541 0.007134 0.006693 

Example  2 

Having gained some confidence in the 
perturbation solution, we now try larger val- 
ues of  oe and/3: oe = 0,55 and/3 = 0.6. The 
feed composi t ion and tt remain the same as 
those in Example  I. Table 2 shows that CI 
is again good enough for most  practical pur- 
poses and represents  an improvement  over  
C0. Note  that even in this case the exact  and 

T A B L E  2 

C o m p a r i s o n  of  N u m e r i c a l  and  P e r t u r b a t o n  Solu t ions  

(a  = 0 .55 , /3  = 0.6) 

0 1.000000 1.000000 1.000000 
0.3 0.857755 0.857422 0.855763 
().6 0.728022 0.726839 0.723565 
0.9 0.611252 0.608827 0.604068 
1.2 0.507658 0.503745 0.497719 
1.5 0.417156 0.411673 0.404674 
1.8 0.339339 0.332365 0.324738 
2.1 0.273487 0.265236 0.257344 
2.4 (1.218610 0.2(19394 0.201578 
2.7 0.173524 0.163709 0.156257 
3.0 0.136950 0.126903 0.120028 
3.3 0.107605 0.097658 0.091493 
3.6 0.084269 0.074697 0.069301 
4.2 0.051377 0.043095 0.039195 
4.8 0.031232 0.024546 0.(}21886 
5.4 0.019007 0.013871 0,012129 
6.0 0.016039 (I.007801 0.006930 
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T A B L E  3 

Compar ison  of Numer ica l  and Per turbaton Solutions 

(c~ = 0.55,/3 = 0.6) 

r Cexac t C I C O 

0 1.000000 1.000000 1.000000 
0.3 0.849084 0.848760 0.855763 
0.6 0.711324 0.710491 0.723565 
0.9 0.587533 0.586025 0.604068 
1.2 0.478256 0.475944 0.497719 
1.5 0.383665 0.380478 0.404674 
1.8 0.303474 0.299418 0.324738 
2.1 0.236925 0.232088 0.257344 
2.4 0.182834 0.177379 0.201578 
2.7 0.139714 0.133855 0.156257 
3.0 0.105924 0.099896 0.120028 
3.3 0.079829 0.073852 0.091493 
3.6 0.059911 0.054171 0.069301 
3.9 0.044844 0.039479 0.052223 
4.2 0.033522 0.028621 0.039195 
4.8 0.018732 0.014859 0.021886 
5.4 0.010517 0.007620 0.012129 
6.0 0.005954 0.003869 0.006693 

0.6 

0.4 

0.2 

0,0 

0 5 10 15 20 

FIG. 1. Comparison of C(z) and CI(r) for the asymp- 

totic cases of p, ,> 1 and /x  ,~ 1. 

approximate solutions are so close to each 
other  that they cannot  be distinguished by a 
figure. 

The results of this example are quite en- 
couraging. A/3 = 0.6 means that the three 
species can have the followi__ng adsorptivity 
spectrum: 1.6 K, K, and 0.4K. So the values 
of I( i span a factor of  as high as four. 

In the above examples,  C~ and Co are both 
lower than the exact  result. The following 
example shows that this is not always true. 

Example 3 

We again let a = 0.55,/3 = 0.6, and/x = 
1. The initial composit ion is ( c i f ) =  (0.55, 
0.32, 0.13). As Table 3 shows, C 1 again gives 
a very  good estimate of C(r), whereas Co 
gives too high an estimate. 

Example 4 

Here  we test Eqs. (37) and (38) using the 
same values of  a, /3, and (c/f) as those in 
Example 1. The results are shown in Fig. I. 
For  tx = 0.05, C(-c) calculated by Eq. (38) is 
almost indistinguishable from that by nu- 
merical integration (solid lines). For  tz = 20, 
Eq. (37) gives a C(z) profile reasonably close 
to the exact result. 

CLOSING R E M A R K S  

Usually, the lumped species are chemi- 
cally similar, so the assumptions used in the 
perturbative analysis are reasonable.  For  il- 
lustrative purposes,  we have considered 
only three-species systems in the numerical 
examples. The present perturbative scheme 
should be particularly useful for large multi- 
component  mixtures as long as the individ- 
ual rate constants and adsorptivities do not 
span significant ranges. To obtain more ac- 
curate results, higher-order terms can be 
easily constructed.  

A P P E N D I X  

Notation 

C(z) = total dimensionless concentrat ion 
of reactants at time z 

Cf = total concentrat ion of reactants 
in feed. 

12(0 = total concentrat ion of reactants 
at time t 

CI = first-order approximation to C(z), 
Eq. (36) 

( i  =" concentrat ion of ith species at 
time t 

Oil = concentrat ion of ith species in 
feed 
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ci = d imens ion less  concen t r a t i on  o f  
ith species  at t ime t 

eif = d imens ion less  concen t r a t i on  o f  
ith species  in feed 

k[ = reac t ion  rate cons tan t ,  Eq.  (1) 
JCi = defined as p roduc t  o f  k~ and/ ( ' i  
_K, = adsorp t ion  equil ibrium cons tan t  
K = average  adsorp t ion  cons tan t ,  Eq.  

(6) 
ki = devia tor ic  rate cons tan t ,  Eq.  (4) 
K i = devia tor ic  adsorp t ion  cons tan t ,  

Eq.  (5) 
N = total n u m b e r  o f  reac tan ts  
t = time 
tti,,, ---= func t ions  defined in Eq.  (13), m 

= 1 , 2 . . .  
U,,~ = func t ions  defined in Eq. (14), m 

= 1 , 2  . . . .  
U,',, = func t ions  defined in Eq. (14), m 

= 1 , 2  . . . .  

G r e e k  L e t t e r s  

a = p a r a m e t e r  defined in Eq. (7) 
¢/ = pa rame te r  defined in Eq.  (7) 
6 = p a r a m e t e r  defined in Eq.  (33) 
z = d imens ion less  t ime, Eq. (7) 
,X; = p a r a m e t e r  defined in Eq.  (7) 

/z = d imensionless  adsorp t ion  cons tan t ,  
Eq. (7) 

v; = pa ramete r  defined in Eq. (7) 
o- --- pa ramete r  defined in Eq. (30) 
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